3,108 research outputs found

    High energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws

    Full text link
    Recent experiments on in-situ high-energy self-ion irradiation of tungsten (W) show the occurrence of unusual cascade damage effects resulting from single ion impacts, shedding light on the nature of radiation damage expected in the tungsten components of a fusion reactor. In this paper, we investigate the dynamics of defect production in 150 keV collision cascades in W at atomic resolution, using molecular dynamics simulations and comparing predictions with experimental observations. We show that cascades in W exhibit no subcascade break-up even at high energies, producing a massive, unbroken molten area, which facilitates the formation of large defect clusters. Simulations show evidence of the formation of both 1/2 and interstitial-type dislocation loops, as well as the occurrence of cascade collapse resulting in vacancy-type dislocation loops, in excellent agreement with experimental observations. The fractal nature of the cascades gives rise to a scale-less power law type size distribution of defect clusters.Comment: 6 pages, 3 figure

    11.12.16

    Get PDF

    Could the Hercules satellite be a stellar stream in the Milky Way halo?

    Full text link
    We investigate the possibility that Hercules, a recently discovered Milky Way (MW) satellite, is a stellar stream in the process of formation. This hypothesis is motivated by Hercules' highly elongated shape as well as the measurement of a tentative radial velocity gradient along its body. The application of simple analytical techniques on radial velocity data of its member stars provides tight constraints on the tangential velocity of the system (v_t = -16^{+6}_{-22} km/s, relative to the Galactic Standard of Rest). Combining this with its large receding velocity (145 km/s) and distance (138 kpc) yields an orbit that would have taken Hercules to within 6^{+9}_{-2} kpc of the Galactic centre approximately 0.6 Gyr ago. This very small perigalacticon can naturally explain the violent tidal destruction of the dwarf galaxy in the MW's gravitational potential, inducing its transformation into a stellar stream.Comment: Conference proceedings of "A Universe of dwarf galaxies: Observations, Theories, Simulations" held in Lyon, France (June 14-18, 2010

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Get PDF
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades

    Full text link
    Using in-situ transmission electron microscopy, we have directly observed nano-scale defects formed in ultra-high purity tungsten by low-dose high energy self-ion irradiation at 30K. At cryogenic temperature lattice defects have reduced mobility, so these microscope observations offer a window on the initial, primary damage caused by individual collision cascade events. Electron microscope images provide direct evidence for a power-law size distribution of nano-scale defects formed in high-energy cascades, with an upper size limit independent of the incident ion energy, as predicted by Sand et al. [Eur. Phys. Lett., 103:46003, (2013)]. Furthermore, the analysis of pair distribution functions of defects observed in the micrographs shows significant intra-cascade spatial correlations consistent with strong elastic interaction between the defects

    The Density Profiles of Massive, Relaxed Galaxy Clusters. I. The Total Density Over Three Decades in Radius

    Get PDF
    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive, relaxed galaxy clusters with centrally-located brightest cluster galaxies (BCGs) at z=0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of ~3-3000 kpc. Lensing-derived mass profiles typically agree with independent X-ray estimates within ~15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated along the line of sight. The inner logarithmic slope gamma_tot of the total density profile measured over r/r200=0.003-0.03, where rho_tot ~ r^(-gamma_tot), is found to be nearly universal, with a mean = 1.16 +- 0.05 (random) +0.05-0.07 (systematic) and an intrinsic scatter of < 0.13 (68% confidence). This is further supported by the very homogeneous shape of the observed velocity dispersion profiles, obtained via Keck spectroscopy, which are mutually consistent after a simple scaling. Remarkably, this slope agrees closely with numerical simulations that contain only dark matter, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold dark matter is a better description of the total mass density at radii >~ 5-10 kpc than that of dark matter alone. Hydrodynamical simulations that include baryons, cooling, and feedback currently provide a poorer match. We discuss the significance of our findings for understanding the assembly of BCGs and cluster cores, particularly the influence of baryons on the inner DM halo. [abridged]Comment: Updated to matched the published version in Ap
    • …
    corecore